Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950874

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Assuntos
Substância Branca , Animais , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiologia , Tálamo/diagnóstico por imagem , Macaca mulatta , Mamíferos
2.
Phys Med ; 114: 102681, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37748358

RESUMO

PURPOSE: Steadily increasing use of computational/virtual phantoms in medical physics has motivated expanding development of new simulation methods and data representations for modelling human anatomy. This has emphasized the need for increased realism, user control, and availability. In breast cancer research, virtual phantoms have gained an important role in evaluating and optimizing imaging systems. For this paper, we have developed an algorithm to model breast abnormalities based on fractal Perlin noise. We demonstrate and characterize the extension of this approach to simulate breast lesions of various sizes, shapes, and complexity. MATERIALS AND METHOD: Recently, we developed an algorithm for simulating the 3D arrangement of breast anatomy based on Perlin noise. In this paper, we have expanded the method to also model soft tissue breast lesions. We simulated lesions within the size range of clinically representative breast lesions (masses, 5-20 mm in size). Simulated lesions were blended into simulated breast tissue backgrounds and visualized as virtual digital mammography images. The lesions were evaluated by observers following the BI-RADS assessment criteria. RESULTS: Observers categorized the lesions as round, oval or irregular, with circumscribed, microlobulated, indistinct or obscured margins. The majority of the simulated lesions were considered by the observers to have a realism score of moderate to well. The simulation method provides almost real-time lesion generation (average time and standard deviation: 1.4 ± 1.0 s). CONCLUSION: We presented a novel algorithm for computer simulation of breast lesions using Perlin noise. The algorithm enables efficient simulation of lesions, with different sizes and appearances.


Assuntos
Neoplasias da Mama , Fractais , Humanos , Feminino , Simulação por Computador , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mamografia/métodos , Mama/diagnóstico por imagem , Mama/patologia , Imagens de Fantasmas
3.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398056

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported an additional commissural pathway in rodents, termed the thalamic commissures (TCs), as another interhemispheric axonal fiber pathway that connects cortex to the contralateral thalamus. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted magnetic resonance imaging, viral axonal tracing, and functional MRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as an important fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.

4.
Artif Intell Med ; 142: 102555, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316093

RESUMO

Digital mammography is currently the most common imaging tool for breast cancer screening. Although the benefits of using digital mammography for cancer screening outweigh the risks associated with the x-ray exposure, the radiation dose must be kept as low as possible while maintaining the diagnostic utility of the generated images, thus minimizing patient risks. Many studies investigated the feasibility of dose reduction by restoring low-dose images using deep neural networks. In these cases, choosing the appropriate training database and loss function is crucial and impacts the quality of the results. In this work, we used a standard residual network (ResNet) to restore low-dose digital mammography images and evaluated the performance of several loss functions. For training purposes, we extracted 256,000 image patches from a dataset of 400 images of retrospective clinical mammography exams, where dose reduction factors of 75% and 50% were simulated to generate low and standard-dose pairs. We validated the network in a real scenario by using a physical anthropomorphic breast phantom to acquire real low-dose and standard full-dose images in a commercially available mammography system, which were then processed through our trained model. We benchmarked our results against an analytical restoration model for low-dose digital mammography. Objective assessment was performed through the signal-to-noise ratio (SNR) and the mean normalized squared error (MNSE), decomposed into residual noise and bias. Statistical tests revealed that the use of the perceptual loss (PL4) resulted in statistically significant differences when compared to all other loss functions. Additionally, images restored using the PL4 achieved the closest residual noise to the standard dose. On the other hand, perceptual loss PL3, structural similarity index (SSIM) and one of the adversarial losses achieved the lowest bias for both dose reduction factors. The source code of our deep neural network is available at https://github.com/WANG-AXIS/LdDMDenoising.


Assuntos
Mama , Mamografia , Humanos , Estudos Retrospectivos , Bases de Dados Factuais , Redes Neurais de Computação
5.
Neuroimage Clin ; 30: 102655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34215139

RESUMO

Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes organ dysfunction, including cerebral vasculopathy and neurological complications. Hippocampal segmentation with newer and advanced 7 Tesla (7T) MRI protocols has revealed atrophy in specific subregions in other neurodegenerative and neuroinflammatory diseases, however, there is limited evidence of hippocampal involvement in SCD. Thus, we explored whether SCD may be also associated with abnormalities in hippocampal subregions. We conducted 7T MRI imaging in individuals with SCD, including the HbSS, HbSC and HbS/beta thalassemia genotypes (n = 53), and healthy race and age-matched controls (n = 47), using a customized head coil. Both T1- and T2-weighted images were used for automatic segmentation of the hippocampal subfields. Individuals with SCD had, on average, significantly smaller volume of the region including the Dentate Gyrus and Cornu Ammonis (CA) 2 and 3 as compared to the control group. Other hippocampal subregions also showed a trend towards smaller volumes in the SCD group. These findings support and extend previous reports of reduced volume in the temporal lobe in SCD patients. Further studies are necessary to investigate the mechanisms that lead to structural changes in the hippocampus subfields and their relationship with cognitive performance in SCD patients.


Assuntos
Anemia Falciforme , Hipocampo , Anemia Falciforme/diagnóstico por imagem , Região CA2 Hipocampal , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal
6.
Phys Med Biol ; 65(22): 225035, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231201

RESUMO

In this work we model the noise properties of a computed radiography (CR) mammography system by adding an extra degree of freedom to a well-established noise model, and derive a variance-stabilizing transform (VST) to convert the signal-dependent noise into approximately signal-independent. The proposed model relies on a quadratic variance function, which considers fixed-pattern (structural), quantum and electronic noise. It also accounts for the spatial-dependency of the noise by assuming a space-variant quantum coefficient. The proposed noise model was compared against two alternative models commonly found in the literature. The first alternative model ignores the spatial-variability of the quantum noise, and the second model assumes negligible structural noise. We also derive a VST to convert noisy observations contaminated by the proposed noise model into observations with approximately Gaussian noise and constant variance equals to one. Finally, we estimated a look-up table that can be used as an inverse transform in denoising applications. A phantom study was conducted to validate the noise model, VST and inverse VST. The results show that the space-variant signal-dependent quadratic noise model is appropriate to describe noise in this CR mammography system (errors< 2.0% in terms of signal-to-noise ratio). The two alternative noise models were outperformed by the proposed model (errors as high as 14.7% and 9.4%). The designed VST was able to stabilize the noise so that it has variance approximately equal to one (errors< 4.1%), while the two alternative models achieved errors as high as 26.9% and 18.0%, respectively. Finally, the proposed inverse transform was capable of returning the signal to the original signal range with virtually no bias.


Assuntos
Mamografia , Modelos Teóricos , Razão Sinal-Ruído , Algoritmos , Humanos , Distribuição Normal , Imagens de Fantasmas
7.
Med Phys ; 46(6): 2683-2689, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972769

RESUMO

PURPOSE: To investigate the use of an affine-variance noise model, with correlated quantum noise and spatially dependent quantum gain, for the simulation of noise in virtual clinical trials (VCT) of digital breast tomosynthesis (DBT). METHODS: Two distinct technologies were considered: an amorphous-selenium (a-Se) detector with direct conversion and a thallium-doped cesium iodide (CsI(Tl)) detector with indirect conversion. A VCT framework was used to generate noise-free projections of a uniform three-dimensional simulated phantom, whose geometry and absorption match those of a polymethyl methacrylate (PMMA) uniform physical phantom. The noise model was then used to generate noisy observations from the simulated noise-free data, while two clinically available DBT units were used to acquire projections of the PMMA physical phantom. Real and simulated projections were then compared using the signal-to-noise ratio (SNR) and normalized noise power spectrum (NNPS). RESULTS: Simulated images reported errors smaller than 4.4% and 7.0% in terms of SNR and NNPS, respectively. These errors are within the expected variation between two clinical units of the same model. The errors increase to 65.8% if uncorrelated models are adopted for the simulation of systems featuring indirect detection. The assumption of spatially independent quantum gain generates errors of 11.2%. CONCLUSIONS: The investigated noise model can be used to accurately reproduce the noise found in clinical DBT. The assumption of uncorrelated noise may be adopted if the system features a direct detector with minimal pixel crosstalk.


Assuntos
Mamografia , Modelos Estatísticos , Razão Sinal-Ruído , Ensaios Clínicos como Assunto , Humanos , Interface Usuário-Computador
8.
Am J Trop Med Hyg ; 98(2): 586-588, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29313470

RESUMO

In countries where poliomyelitis has been eradicated, Guillain-Barré syndrome (GBS) is the leading cause of acute flaccid paralysis. The range of infections that precede GBS in Brazil is unknown. Campylobacter jejuni infection is the most frequent trigger of GBS worldwide. Given the lack of systematic surveillance of diarrheal diseases, particularly in adults, the incidence of enteritis caused by C. jejuni in developing countries is unknown. From 2014 to 2016, pretreatment serum samples from 63 GBS patients were tested by immunoglobulin M (IgM) enzyme-linked immunosorbent assay for C. jejuni. Campylobacter jejuni IgM antibodies were detected in 17% (11/63) of the samples. There was no association between serological positivity (IgM) for C. jejuni and the occurrence of diarrhea among the investigated cases (P = 0.36). Hygiene measures, basic sanitation, and precautions during handling and preparation of food of animal origin may help prevent acute flaccid paralysis.


Assuntos
Biomarcadores/análise , Infecções por Campylobacter/diagnóstico , Síndrome de Guillain-Barré/etiologia , Adulto , Biomarcadores/sangue , Brasil , Infecções por Campylobacter/sangue , Infecções por Campylobacter/epidemiologia , Campylobacter jejuni/patogenicidade , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Síndrome de Guillain-Barré/sangue , Síndrome de Guillain-Barré/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Vigilância da População/métodos
9.
IEEE Trans Med Imaging ; 36(11): 2331-2342, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28641248

RESUMO

This paper proposes a new method of simulating dose reduction in digital breast tomosynthesis, starting from a clinical image acquired with a standard radiation dose. It considers both signal-dependent quantum and signal-independent electronic noise. Furthermore, the method accounts for pixel crosstalk, which causes the noise to be frequency-dependent, thus increasing the simulation accuracy. For an objective assessment, simulated and real images were compared in terms of noise standard deviation, signal-to-noise ratio (SNR) and normalized noise power spectrum (NNPS). A two-alternative forced-choice (2-AFC) study investigated the similarity between the noise strength of low-dose simulated and real images. Six experienced medical physics specialists participated on the study, with a total of 2 160 readings. Objective assessment showed no relevant trends with the simulated noise. The relative error in the standard deviation of the simulated noise was less than 2% for every projection angle. The relative error of the SNR was less than 1.5%, and the NNPS of the simulated images had errors less than 2.5%. The 2-AFC human observer experiment yielded no statistically significant difference ( =0.84) in the perceived noise strength between simulated and real images. Furthermore, the observer study also allowed the estimation of a dose difference at which the observer perceived a just-noticeable difference (JND) in noise levels. The estimated JND value indicated that a change of 17% in the current-time product was sufficient to cause a noticeable difference in noise levels. The observed high accuracy, along with the flexible calibration, make this method an attractive tool for clinical image-based simulations of dose reduction.


Assuntos
Simulação por Computador , Mamografia/métodos , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Algoritmos , Mama/diagnóstico por imagem , Feminino , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
10.
Med Phys ; 43(6): 2704-2714, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277017

RESUMO

PURPOSE: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. METHODS: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. RESULTS: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. CONCLUSIONS: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.


Assuntos
Algoritmos , Simulação por Computador , Mamografia/métodos , Doses de Radiação , Artefatos , Mama/efeitos da radiação , Humanos , Modelos Lineares , Mamografia/instrumentação , Modelos Anatômicos , Imagens de Fantasmas
11.
Am J Trop Med Hyg ; 93(2): 377-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055749

RESUMO

A Brazilian ranch worker with encephalitis and flaccid paralysis was evaluated in the regional Acute Encephalitis Syndromic Surveillance Program. This was the first Brazilian patient who met the Centers for Disease Control and Prevention (CDC) confirmation criteria for West Nile virus disease. Owing to the overlapping of neurological manifestations attributable to several viral infections of the central nervous system, this report exemplifies the importance of human acute encephalitis surveillance. The syndromic approach to human encephalitis cases may enable early detection of the introduction of unusual virus or endemic occurrence of potentially alarming diseases within a region.


Assuntos
Febre do Nilo Ocidental/diagnóstico , Vírus do Nilo Ocidental/isolamento & purificação , Brasil , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia/virologia
12.
J Digit Imaging ; 26(2): 183-97, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22806627

RESUMO

A new restoration methodology is proposed to enhance mammographic images through the improvement of contrast features and the simultaneous suppression of noise. Denoising is performed in the first step using the Anscombe transformation to convert the signal-dependent quantum noise into an approximately signal-independent Gaussian additive noise. In the Anscombe domain, noise is filtered through an adaptive Wiener filter, whose parameters are obtained by considering local image statistics. In the second step, a filter based on the modulation transfer function of the imaging system in the whole radiation field is applied for image enhancement. This methodology can be used as a preprocessing module for computer-aided detection (CAD) systems to improve the performance of breast cancer screening. A preliminary assessment of the restoration algorithm was performed using synthetic images with different levels of quantum noise. Afterward, we evaluated the effect of the preprocessing on the performance of a previously developed CAD system for clustered microcalcification detection in mammographic images. The results from the synthetic images showed an increase of up to 11.5 dB (p = 0.002) in the peak signal-to-noise ratio. Moreover, the mean structural similarity index increased up to 8.3 % (p < 0.001). Regarding CAD performance, the results suggested that the preprocessing increased the detectability of microcalcifications in mammographic images without increasing the false-positive rates. Receiver operating characteristic analysis revealed an average increase of 14.1 % (p = 0.01) in overall CAD performance when restored image sets were used.


Assuntos
Artefatos , Doenças Mamárias/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador , Feminino , Humanos , Mamografia/instrumentação , Imagens de Fantasmas , Curva ROC , Intensificação de Imagem Radiográfica/métodos , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...